World Wetlands Day is celebrated on February 2nd every year. It was first celebrated in 1997 to raise awareness about the importance of wetlands and the need to conserve them. The day marks the date of the signing of the Ramsar Convention on Wetlands in 1971, an international treaty that aims to conserve and manage wetlands around the world. This year’s theme is “Protecting wetlands for our common future.”
Sunday, 2 February 2025
Thursday, 9 January 2025
Contamination of PTEs in Sediment and Research
The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health. The highest mean concentration of PTEs in sediment followed in decreasing order Zn (1365.21 mg/kg) > Cu (149.34 mg/kg) > Pb (46.34 mg/kg) > Ni (34.78 mg/kg) > As (6.31 mg/kg) > Cd (2.34 mg/kg) > Hg (1.03 mg/kg). In addition, most of these PTEs were significantly correlated (p < 0.05) among the sites and exceeded the safety guideline value. The geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI) showed high levels of PTEs contamination and moderately polluted to highly polluted levels of these elements. At the BL3, BL4, and BL6 sites within the study site, the ecological risk (PERI) score was extremely high, and the PERI values range found was from 75.39 to 355.72. Every PTE had a slightly greater concentration during the dry season than the wet season. Interestingly, PTE accumulation from sediment indicated non-carcinogenic risk (HQdermal) in human health, whereas most of the sites showed carcinogenic risk (CRdermal) to human health (adult and child) due to Cd and Ni accumulation. Multivariate statistical analysis (MVSA) indicated the most likely anthropological sources were the untreated wastes discharged in the river sampling area. People who come into contact with polluted sediments are constantly exposed to Ni and Cd pollution, which increases the risk of cancer and non-cancerous diseases. So, continuous PTE monitoring is advised by this study to assess ecological and human health risks.
Sources: Journal of Contaminant Hydrology
https://doi.org/10.1016/j.jconhyd.2024.104492
Saturday, 4 January 2025
Potentially Toxic Elements Research
Friday, 8 November 2024
Research on Invasive Asian Clam Species
https://link.springer.com/article/10.1007/s10661-024-13322-6
Abstract
The invasive Asian clam species, Corbicula fluminea, has significant ecological and societal implications at both local and international levels due to its nutritional aspects. C. fluminea from four urban rivers in Bangladesh exhibited negative allometric growth and degree of contamination with potentially toxic elements (PTEs), which posed a concern to human health based on the AAS and USEPA risk models. The highest mean concentration of PTEs followed a decreasing order: Zn (155.08 ± 4.98 mg/kg) > Cu (53.96 ± 7.61 mg/kg) > Mn (14.29 ± 3.25 mg/kg) > Cd (2.23 ± 0.10 mg/kg) > Pb (1.64 ± 0.14 mg/kg) > As (1.51 ± 0.45 mg/kg) > Ni (1.25 ± 0.27 mg/kg) > Cr (0.65 ± 0.02 mg/kg) in C. fluminea and raising safety concerns. With the exception of Cr and Mn, all element levels were exceeded safety guideline value (SGV) (mg/kg. ww) and exhibited a strong positive correlation (p < 0.05) among the sites. The target hazard quotient of Mn is THQ > 1, and As showed a non-carcinogenic risk in children at OBR, BR, and MR site. The hazard index (HI > 1) value at the BR and MR sites indicated a public health risk associated with the clam. The target cancer risk (TCR) values for As, Cd, and Ni showed that consuming clams posed a carcinogenic risk to human health. These findings suggest that eating these clams may put consumers at significant risk for health issues related to As, Cd, Ni, and Mn exposure. The study emphasizes the need for strict monitoring and preventative measures to reduce the health risks posed by PTEs contamination in clams.